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A number of case studies are presented which were developed from interviews with 
industry data science experts.



THE DIGITAL TWIN

While there is no standard definition, a digital twin can be 
thought of as a virtual model, or representation, that is the 
counterpart (or twin) of a physical object and/or process. 

The definition above encompases an individual component, 
product, system or whole facility; depending on the chosen 
physical scale that the digital twin is to be associated with. 
The complexity of the behaviour predicted and the required 
or necessary level of detail will have a large part to play in 
this. 

For a digital twin to be of use, it needs to be capable of predicting 
behaviour of it’s real-world counterpart (or twin).  These 
predicted behaviours could relate to operational performance, 
efficiency and productivity, it could relate to reliability and 
integrity; the focus depends on the aims of the digital twin’s 
application. How the digital twins make predictions will depend 
on the system being considered.  Some may use data gathered 
from sensors to predict or control future behaviour, but often 
engineers need to understand detail about the system behaviour 
which cannot be measured directly. In such cases data must be 
predictied through methods such as predictive engineering. 

Primarily this paper seeks to explore the possibilities for use of 
predictive engineering analytics embedded in the digital twin 
during the operating life of equipment. The digital twin has a 
lifecycle that mirrors the actual engineering product or system, 
and can allow insights into product performance all the way 
from concept development right through to end-of-life.  In this 
paper the authors will show how design data can be critical to 
delivering a predictive capability in a digital twin to aid operational 
performance.

ENGINEERING LIFECYCLE AND THE DIGITAL TWIN

This paper will focus on a small sample of potential digital twin 
applications with focus on equipment in the operating phase of 
its lifecyle . However, the data and knowledge that is built up from 
the first inception of a product, system or facility can be extremely 
valuable in building a digital twin. Even at the earliest stages of 
product development, by providing a digital representation of the 
concept, the digital twin can help optimise and refine the product 
design - whether a single product, an engineering facility, or an 
entire oil field development (for example). The data gathered 

from a digital twin used to aid or optimize a design could then be 
used when implementing the in-serivce, or operating, version of 
the digital twin; this is discussed in a subsea-related case later in 
this paper.

During the manufacturing process, the digital twin can provide 
additional information to allow insight into the quality of the 
finished product – and check that the product will meet the 
specified requirements - before it is manufactured.

Following installation, the digital twin can provide continued 
insights into the performance of the equipment throughout its 
operational life – crucially, to verify the operational integrity or 
performance throughout its operational life, which, in the oil and 
gas industry, can extend into 20, or 30 years in longer field-life 
scenarios.

THE DATA-DRIVEN DIGITAL TWIN FOR OPERATIONS

With regards to a digital twin in the context of an operating system 
take, for example, a subsea production tree on the seabed; used 
to control flow from, and provide access to, a subsea well.  These 
complex engineered systems have a wide range of requirements, 
functions and capabilities.

While the system is in operation, sensors enable operators 
to stream data from the seabed – measurements from flow 
meters, temperature sensors, pressure transducers and sand 
monitors for example. Large amounts of data may be generated 
from the sensors, but the data must be curated in order that 
it may be analysed to provide engineering insight. The scale of 
this data curation task, if not appropriately planned, is often an 
underestimated element in both the application of data science 
and when building the digital twin. It becomes an operational 
challenge to gain insight from the data produced.

When the datasets are in an accessible format for analysis, 
we can begin to understand and use it, to learn and to inform 
operating decisions. Such decisions could be for controlling the 
production rate, or the system itself; to help understand or plan 
maintenance, to aid flow assurance or perhaps to improve the 
efficiency or operation of a particular system.
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Figure 1 Operating digital twin flow of data and information

Filling in the data gaps

There are many situations where the data required to make 
engineering decisions may be unavailable. For example, we may 
need to know temperatures, pressures or erosion rates at a 
location where no sensors are positioned. Equally, sensors cannot 
measure future events.  Minor unexpected operating conditions, 
continuing for extended periods, have the potential to impact a 
system’s efficiency or maintenance requirements, while extreme 



Figure 2 Operating digital twin flow of data and information including predictive 
data generation

PREDICTIVE DATA THROUGH SIMULATION

‘Predictive engineering analytics’ is the application of multi-
disciplinary engineering simulation, coupled with intelligent 
reporting and data analytics. Intelligent reporting and data 
analytics refer to how data is used and processed. 

In engineering endeavours one can view simulation as the 
application of science-based models to predict real-world 
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approaches to solving engineering problems. It is unlikely that a 
high-fidelity model will generate new data in real-time, and this is 
where the next levels of simulation become more appropriate in 
many cases.

SYSTEM SIMULATION

System simulation is an approach using a reduced level of 
geometric detail than high fidelity approaches. System simulations 
usually employ one- or two-dimensional representations of a 
system, still often using the fundamental scientific laws and 
equations of a real-world behaviour, but with lower geometric 
resolution, fidelity and detail. This approach typically requires less 
computational resource than a high fidelity approach of the same 
system, and therefore less time to render the simulation solution 
and lends itself well to quicker solutions and larger system-level 
predictions.

Taking the example of a subsea production system, with a subsea 
jumper connecting a production tree to a manifold system. In 
Figure 3 below the jumper is shown in three-dimensions in a high-
fidelity CFD simulation  (left) and in a system simulation (right) 
below, both are being used to predict thermal behaviour.

Figure 3 Representation of a subsea jumper in a high-fidelity CFD simulation and 
system simulation predicting cooldown

The system comprises mainly insulated pipe with some exposed 
locations (cold spots) at lifting points and sensors. The jumper 
connects to the production system at each end with geometrically 
(and thermally) complex connectors. To understand the thermal 
behviour of this jumper (and connectors),  there is a need to 
predict the temperatures at many different locations.  We may 
use the temperature predictions to assess the risk of hydrate 
formation during production or in the event of a system shut-
down.

A high fidelity CFD simulation will use a 3D geometrical 
representation, allowing a very detailed view of the thermal 
distribution to be predicted throughout the jumper, but it will 
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REDUCED ORDER MODELS

Reduced Order Models (ROM) refer to a variety of techniques 
used to reduce the computational complexity of mathematical 
models in numerical simulations.  At the lowest level of detail, 
fidelity and computationl resource, ROMs are often not based 
on fundamental scientific principles, instead they are commonly 
based on a mathematical description of a system that has been 
tuned or trained to match known real-world behaviours within 
a specific set of bounding or operating criteria.  This tuning, 
training and validation is often obtained from validated higher 
fidelity simulations, test or operational data.  Typically ROMs are 
low fidelity approximations, or reductions, of a system, usually 
used to predict specific behaviour of a system, or parts of a 
system in real-time.  

A ROM can be created in multiple ways.  The simplest ROM is 
perhaps a curve showing how two variables respond to one 
another to define a behaviour at a given location (perhaps 
changing temperature at a point in a system).  As the number of 
input or output variables increase a response surface may need to 
be generated, where we again feed data on how a system responds 
and then look up that data when it is is needed.  Alternatively, a 
simple mathematical (or sometimes science-based) model can 
be created, for example, describing system behaviour using a set 
of differential equations, characterized by the number of parts of 
a system and a number of coefficients that need to be trained, 
tuned and validated to predict a specific system response.

ROMs are the least versatile and flexible of the predictive 
approaches discussed here, but are the quickest and least 
resource intensive. They rely on the higher fidelity approaches 
(or physical data) from which the data can be used to build the 
reduced order model.

EXAMPLES OF THE PREDICTIVE DIGITAL TWIN

The following examples demonstrate how each of these 
simulation techniques can be used, and how they need to be 
brought together with physical data to generate the predictive 
element of a digital twin for operations, to provide valuable 
insights.

HEAT EXCHANGER INTEGRITY – THE PREDICTIVE 
ELEMENT

The first example looks at the integrity management of a heat 
exchanger, common to many production and process facilities, 
as shown in Figure 5. 

 

Figure 5: Shell and tube heat exchanger

The heat exchanger comprises a bank of looped tubes through 
which steam is passed and which exits the tube bank having 
transferred its heat to the operating fluid contained in the 
surrounding vessel.

In this case temperature sensors were reporting excessively high 
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temperature gradients.  This temperature data was then used in a FEA simulation 
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Figure 8 Correlating temperature-stress data at key locations

FIigure 9: Validation of the reduced order model
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Application of Reduced Order Model into operation

In operations, this works by taking the sensor temperature 
time history data and running this through the reduced order 
model. The ROM generates the stress response time history  
and an updated fatigue life which can then be used to calculate a 
remaining life, this process is shown in Figure 10. This new insight 
into the system can be used to inform operational cycles and 
maintenance schedules. 

In this way, we have operational temperature data that creates 
a summary of the structural integrity of the system in real time, 
this process is demonstrated in the figure below.  Extending this 
concept further, beyond the understanding of the current state 
of the equipment, the ROM can be used by engineers in operating 
roles.  Engineers, or even an algorithm, can explore and plan how 
to operate the heat exchanger in the future, based on operating 
requirements and planned maintenance schedules.

One aspect that the above approach cannot capture, or solve, 
is the maldistribution of the flow causing the potential integrity 
risk, perhaps better use of simulation at the design phase, or even 
design modification would be worth considering.

 

Figure 10 Reduced order model inputs and outputs



SUBSEA PRODUCTION - THERMAL MANAGEMENT

Thermal management is a key aspect of any subsea production 
flow assurance strategy.  This may be driven simply to maintain 
the required operating conditions between the reservoir and 
production facility, or by the need to manage the hydrate 
formation risk.  In many subsea production systems, this risk 
is related to the composition the of the fluids produced, the 
operating temperatures, pressures, and system configuration 
and design.  Accordingly, understanding thermal performance of 
such systems, whether relm a



Figure 11 How high-fidelity CFD simulation informs quicker system simulations and 
reduced order models (ROMs)

Building a reliable system simulation or ROM

For some engineering systems, a system simulation may often 
be built without the need to train or tune it using higher fidelity 
approaches; it depends on what is required to be taken from the 
data obtained and the system complexity.  For geometrically or 
operationally complex engineering systems, a system simulation 
may need to be trained to obtain accurate data.

In this example four different cases are simulated using the 
CFD approach as shown in Figure 12, these show temperature 
of production fluid at a given sensor location in the event of 
production shutdowns from different flowing temperatures 
(prior to shutdown). From those high-fidelity simulations, the 
regions where the key hydrate risks are located can be identified, 
and detailed temperature data gathered of how the whole system 
is behaving, both during production and following a shutdown as 
the system cools.

The first of the four CFD cases was used to train the system 
simulation; in this case it was used to tune local heat transfer 
coefficients and thermal characteristics where complex 





In addition, a digital twin that can predict performance, and 
understand historical performance, delivers the opportunity 
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